Halo teman-teman! Apa kabarnya nih? Penulis harap kamu selalu sehat dan tetap semangat mengikuti pembelajaran online ya. Kali ini kita akan melanjutkan materi Matematika kelas 11 bab 3 tentang matrik.
Oh iya, jangan lupa untuk menyiapkan buku ajar keluaran Kemdikbud dan mencatat informasi penting di bawah ini ya guys! So, yuk langsung cek rangkuman berikut!
Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung biasa “( )” atau kurung siku “[ ]”.
Teguh, siswa kelas IX SMA Panca Budi, akan menyusun anggota keluarganya berdasarkan umur dalam bentuk matriks. Dia memiliki Ayah, dan Ibu, berturut-turut berumur 46 tahun dan 43 tahun.
Selain itu, dia juga memiliki kakak dan adik, secara berurut, Ningrum (22 tahun), Sekar (19 tahun), dan Wahyu (12 tahun). Dia sendiri berumur 14 tahun.
Berbekal dengan materi yang dia pelajari di sekolah dan kesungguhan dia dalam berlatih, dia mampu melakukan variasi susunan matriks yang merepresentasikan umur anggota keluarga Teguh sebagai berikut (berdasarkan urutan umur dalam keluarga Teguh).
i. Alternatif susunan I
ii. Alternatif susunan II
Matriks baris adalah matriks yang terdiri atas satu baris saja. Biasanya, ordo matriks seperti ini adalah 1 × n, dengan n banyak kolom pada matriks tersebut.
Matriks kolom adalah matriks yang terdiri atas satu kolom saja. Matriks kolom denagn ordo m × 1, dengan m banyak baris pada matriks tersebut.
Matriks persegi panjang adalah matriks yang banyak barisnya tidak sama dengan banyak kolomnya. Matriks seperti ini memiliki ordo m × n.
Matriks persegi adalah matriks yang mempunyai banyak baris dan kolom sama. Matriks ini memiliki ordo n × n.
Mari kita perhatikan matriks F dengan ordo 4 × 4. Terdapat pola susunan pada suatu matriks persegi,
Dengan memperhatikan konsep pada matriks segitiga di atas, jika kita cermati kombinasi pola tersebut pada suatu matriks pesegi.
Mari kita cermati kembali matriks persegi dengan pola.
Jika entry suatu matriks semuanya bernilai nol, maka disebut matriks nol.
Matriks A dan matriks B dikatakan sama (A = B) jika dan hanya jika:
i. Ordo matriks A sama dengan ordo matriks B.
ii. Setiap entri yang seletak pada matriks A dan matriks B mempunyai nilai yang sama, aij = bij
(untuk semua nilai i dan j).
Tentukanlah nilai a, b, c, dan d yang memenuhi matriks Pt = Q, dengan
Karena P merupakan matriks dengan ordo 2 × 3, maka Pt merupakan matriks dengan ordo 2 × 3. Matriks Q merupakan matriks dengan ordo 2 × 3. Oleh karena itu berlaku kesamaan matriks Pt = Q.
Dari kesamaan di atas, kita temukan nilai a, b, c, dan d sebagai berikut.
• 3b = 3 maka b = 1, dan 2c = 6 maka c = 3.
• 2a – 4 = –4 maka a = 0.
• Karena a = 0 maka d = –3.
Jadi, a = 0, b = 1, c = 3, dan d = –3.
Definisi
Misalkan A dan B adalah matriks berordo m × n dengan entri-entri aij dan bij. Matriks C adalah jumlah matriks A dan matriks B, ditulis C = A + B, apabila matriks C juga dengan ordo m × n dengan entry-entry ditentukan oleh: cij = aij + bij (untuk semua i dan j).
Contoh
Mari kita cermati contoh berikut ini.
Alternatif Penyelesaian
Matriks X dan Y memiliki ordo yang sama, yaitu berordo 3 × 2, sedangkan matriks Z dengan ordo 3 × 3. Oleh karena itu, menurut aturan pengurangan dua matriks hanya bagian i) saja yang dapat ditentukan, ii) dan iii) tidak dapat dioperasikan, (kenapa)?
Dari pemahaman contoh di atas, pengurangan dua matriks dapat juga dilakukan dengan mengurangkan langsung entry-entry yang seletak dari kedua matriks tersebut, seperti yang berlaku pada penjumlahan dua matriks, yaitu: A – B = [aij] – [bij].
Masalah
Siti dan teman-temannya makan di kantin sekolah. Mereka memesan 3 ayam penyet dan 2 gelas es jeruk di kantin sekolahnya. Tak lama kemudian, Beni dan teman-temannya datang memesan 5 porsi ayam penyet dan 3 gelas es jeruk.
Siti menantang Amir menentukan harga satu porsi ayam penyet dan harga es jeruk per gelas. Jika Siti harus membayar Rp70.000,00 untuk semua pesanannya dan Beni harus membayar Rp115.000,00 untuk semua pesanannya.
Alternatif Penyelesaian
Cara I
Petunjuk: Ingat kembali materi sistem persamaan linear yang sudah kamu pelajari. Buatlah sistem persamaan linear dari masalah tersebut, lalu selesaikan dengan matriks.
Misalkan x = harga ayam penyet per porsi
y = harga es jeruk per gelas
Sifat
Misalkan matriks A dan B dengan ordo m × m dengan m ∈ N. Jika det A = |A| dan det B = |B|, maka |AB|= |A|.|B|
Definisi
Misalkan A sebuah matriks persegi dengan ordo n × n, n ∈ N
• Matriks A disebut matriks nonsingular, apabila det A ≠ 0.
• Matriks A disebut matriks singular apabila det A ≠ 0.
• A–1 disebut invers matriks A jika dan hanya jika AA–1 = A–1A = I.
I adalah matriks identitas perkalian matriks.
diperoleh invers matriks A. Dengan rumus:
A–1 =1 /det. A x adj (A)
Sifat
Misalkan matriks A dengan ordo n × n dengan n ∈ N, det(A) ≠ 0. Jika A–1 adalah invers matriks A, maka (A–1)–1 = A.
Misalkan matriks A dan B berordo n × n dengan n ∈ N, det A ≠ 0 dan det B ≠ 0. Jika A –1 dan B –1 adalah invers matriks A dan B, maka (AB) –1 = B –1 A –1.
Daftar Pustaka:
Sudianto Manullang, Andri Kristianto S., Tri Andri Hutapea, Lasker Pangarapan Sinaga, Bornok Sinaga, Mangaratua Marianus S., Pardomuan N. J. M. Sinambela. 2017. Matematika SMA/MA/SMK/MK Kelas XI. Jakarta : Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud.
This post was last modified on Agustus 14, 2021 8:07 pm
Sistem pembayaran di iOS sangat berbeda dengan Android, karena sistem pembayaran di Android sudah bisa… Read More
Metode pembayaran Link Aja adalah salah satu metode pembayaran online yang sangat mudah dan praktis… Read More
Tertarik mau berlangganan Pahamify? Masih bingung cara melakukan pembayaran lewat Alfamart? Berikut panduan untuk melakukan… Read More
Kita sering mendengar bahwa hewan dan tumbuhan melakukan adaptasi. Namun, tahukah kamu bagaiman adaptasi bagaimana… Read More
Apakah kamu tahu bahwa hewan juga ada yang bereproduksi secara aseksual loh? Kira – kira,… Read More
Bagaimanakah reproduksi tumbuhan Gymnospermae? Bagaimanakah reproduksi tumbuhan Lumut dan tumbuhan Paku? Sudah membaca buku tapi… Read More
Leave a Comment