Materi Matematika Kelas 9 Bab 5 Bangun Ruang Sisi Lengkung

Kami menyajikan rangkuman lengkap untuk siswa SMP, sebagian besar sudah kami rangkum tiap mata pelajarannya, dari kelas 7 hingga materi kelas 9. Kamu bisa lihat rangkuman tiap kelas di halaman Rangkuman Materi SMP Kelas 7, Rangkuman Materi Kelas 8, Rangkuman Materi Kelas 9.

Pada pembahasan sebelumnya kita sudah membahas materi Bab 1 Perpangkatan dan Bentuk Akar, Bab 2 Persamaan dan Fungsi Kuadrat, Bab 3 Transformasi dan Bab 4 Bangun Ruang Sisi Lengkung. Pada pembahasan kali ini kita akan lanjutkan materi Matematika kelas 9 Bab 5 yang membahas tentang Bangun Ruang Sisi Lengkung.

Materi ini dirangkum dan disusun dari buku paket BSE K13 revisi terbaru terbitan Kemdikbud RI. Sehingga bahan belajar ini bersumber dari buku terpercaya dan bisa dijadikan sebagai bahan belajar yang tepat untuk siswa SMP.

Materi Matematika Kelas 9
Bab 5 Bangun Ruang Sisi Lengkung


1. Tabung

Tabung adalah bangun ruang sisi lengkung yang dibentuk oleh dua buah lingkaran identik yang sejajar dan sebuah persegi panjang yang mengelilingi kedua lingkaran tersebut.

Luas Tabung:

L = Luas jaring-jaring tabung

= 2 × Luas Lingkaran + Luas ABCD

= 2πr2 + AB × BC

= 2πr2 + 2πr × t

= 2πr(r + t)

Volume Tabung:

V = La × t

 = πr2 × t

Contoh: 

Hitung luas permukaan tabung di samping. Alternatif Penyelesaian:Tabung di samping memiliki jari-jari r = 3 cm dan tinggi= 7 cm, maka luas permukaannya adalahL = 2πr(r + t) rumus luas permukaan tabung = 2π × 3 × (3 + 7) substitusi nilai r dan t   = 60πJadi, luas permukaan tabung adalah 60π cm2.

2. Kerucut

Kerucut adalah bangun ruang sisi lengkung yang dapat dibentuk dari tabung dengan mengubah tutup tabung menjadi titik. Titik tersebut biasanya disebut dengan titik puncak. Kerucut memiliki dua sisi, yaitu satu sisi datar dan satu sisi lengkung. Kerucut merupakan limas dengan alas lingkaran.

Baca Juga:  Rangkuman Materi Matematika Kelas 9 K13 Revisi Lengkap!

Luas Permukaan Kerucut:

L = Luas Lingkaran + Luas Juring ABC

= πr2 + πrs

= πr(r + s)

) dengan

Volume Kerucut:

V = 1/3 La × t

   = 1/3 πr2 × t

Contoh:


Hitung tinggi kerucut di samping.12 dmL = 300 dm2Jari-jari kerucut adalah r = 12 dm dan luasnya adalahL = 300 dm2.L  = πr(r + s) rumus luas permukaan tabung300π = π(12)(12 + s) substitusi nila L dan r25 = (12 + s) kedua ruas dibagi dengan 12π13 = s               

Kemudian berdasarkan teorema phytagoras

3. Bola

Bola adalah bangun ruang sisi lengkung yang dibentuk dari tak hingga lingkaran yang memiliki jari-jari sama panjang dan berpusat pada titik yang sama.

Luas Permukaan Bola: L = 4πr2

Volume Bola: V = 4/3πr3

Contoh :

Hitung luas bola di samping.Alternaif Penyelesaian:Diameter bola di samping adalah 10 cm, maka jari-jarinyaadalah r = 5 cm.L = 4πr2 rumus luas permukaan bola= 4π(5)2 substitusi nilai r= 100πJadi, luas bola adalah 100π cm2.

Daftar Pustaka : 

Subchan, Winarni, Muhammad Syifa’ul Mufid, Kistosil Fahim, dan Wawan Hafid Syaifudin. 2018. Matematika SMP/MTs Kelas IX. Jakarta : Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud.

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Check Also

Materi PAI Kelas 9 Bab 12 Menyuburkan Kebersamaan dengan Toleransi dan Menghargai Perbedaan

Menyuburkan kebersamaan dengan toleransi dan menghargai perbedaan tentunya sangat penting …